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Abstract. In the problem of optimization of pattern stabilization in perceptrons the replica-
symmetric ansatz is known to be mathematically unstable for storage capacitiesα greater than
someαc. In this paper we demonstrate that forα greater thanαc the one-step replica-symmetry
broken (RSB) solution is also unstable. We further show that in this region, fullRSB is necessary
for an exact solution. Direct evaluation of the two-stepRSB solution yields a minimum storage
error which is only slightly greater than the one-stepRSB, which itself is greater than that given
by the (unstable) replica-symmetric ansatz by a much larger amount.

1. Introduction

A central study in the field of statistical mechanics of neural networks is the use of the
perceptron as an associative memory. A perceptron is a device which associates an output
So with an input vector{Si}, i = 1 . . . N , by a rule of the formSo = f (J · S). In the case
of the binary perceptron,f (J · S) = sign(J · S), and the problem of interest is to store a
set of p patternsξµ by finding a synaptic vectorJ such that for as many of theξµ’s as
possible the statement

ξ
µ
output = sign(J · ξµ) (1)

is true. It is hoped that the perceptron which stores the patterns correctly will then give the
correct output not just when the input corresponds to a stored pattern but also when the input
is a corrupted or noisy version of one of the stored patterns; this is known as associativity.
In order to improve the associativity one introduces a more stringent condition on the stored
patterns; for a givenκ > 0, we now attempt to find aJ that satisfies

ξ
µ
output = sign(J · ξµ − κ) (2)

for as many patterns as possible (to avoid satisfying this criterion by a simple scaling ofJ ,
we introduce the conditionJ · J = N ). Although fewer patterns may now be stored so as
to satisfy this condition, it is expected that those patterns now stored will be more robust
against corruption of the input data, giving the desired improvement in associativity.

The behaviour of the network depends on the storage ratioα ≡ p/N and the
parameterκ. For any value ofκ, there exists anαc(κ) such that the network can store
all the patterns correctly only ifα < αc. For α > αc the interesting question is to determine
what fraction of the patterns can be stored correctly.

This calculation is typically carried out using the well known ‘replica method’. To obtain
results using this method, one must make an ansatz for the form of the replica solution as
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the number of replicas tends to 0. Gardner and Derrida [1] considered the replica-symmetric
(RS) ansatz and showed it to be stable againstRSB fluctuations forα < αc. However, for
α > αc the RS solution is unstable [1, 2] andRSB is necessary. This result has been borne
out by numerical studies by Majeret al [3] and Erichsenet al [4]. Both of these numerical
studies commented on the necessity for a transition to further levels of replica-symmetry
breaking, as shown by the incorrect behaviour of various parameters asα → ∞, but neither
investigated at what value ofα this transition occurred.

In this paper, we investigate the stability of the one-step replica-symmetry broken
solution (one-stepRSB or RSB1) and show that the argument which demonstrates the
instability of this solution can be generalized to demonstrate the instability of any finite
level of replica-symmetry breaking. We provide numerical evidence for this by showing
that whenα > αc and the number of replicas goes to zero, the two-stepRSB ansatz satisfies
the replica saddle-point equations better than theRSB1 ansatz. In general, however, the
difference in the free energies isO(10−2) compared to the difference between the free
energies for replica symmetry and one-stepRSB, implying that for most practical purposes
one-stepRSB will be adequate.

2. The model and the one-stepRSB solution

The system we are interested in is a perceptron withN input nodes (labelledi = 1, . . . , N)
and one output node, obeying the update rule

Soutput = sign

( ∑
i

JiSi

)
Si ∈ {±1} (3)

with the {Ji} constrained by the spherical rule
∑

i J
2
i = N . This perceptron is trained to

store correctly as many as possible of an ensemble ofp = αN patterns{ξµ}, drawn at
random from{±1}N . We define the ‘aligning field’λµ of a patternξµ by

λµ = ξ
µ
output

∑
i

Jiξ
µ

i /|J | . (4)

For someκ, usually taken to be> 0, a patternξµ is considered to be stored correctly if its
aligning fieldλµ > κ.

We formulate the problem as ‘energy’ minimization, defining the energy as

E =
∑

µ

g(λµ) (5)

and, wherever possible, present formal results in terms of a general cost functiong(λ). For
the present explicit case, however, the cost function is

g(λ) = g̃(λ) ≡ θ(κ − λ) . (6)

The minimized energy therefore gives the minimum possible number of patterns that can
be stored incorrectly, in the sense defined above. This is zero ifα is less than a critical
storage capacityαc(κ).

We calculate this quantity by obtaining the free energy of the system,

f ({ξ}) = − lim
N→∞

1

Nβ
ln Z

= − lim
N→∞

1

Nβ
ln

∫ N∏
i=1

dJi δ((J)2 − N) e−βE (7)
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and finally taking the limitβ → ∞ (in which E = Nf ). The free energy in this limit
gives the fraction of patterns that are stored incorrectly, and we thus identify it with the
output error of the perceptron. In the usual fashion, the free energy is assumed to be
self-averaging over the disorder in the patterns{ξµ}. In order to perform this average, we
employ the replica trick〈ln Z〉 = limn→0(〈Zn〉 − 1)/n.

We now review some known results for this problem [1–4]. Using standard techniques
[1, 5] one can express〈Zn〉 in the form

〈Zn〉 =
∫ ∏

αβ

dqαβ eN8(qαβ)

=
∫ ∏

αβ

dqαβ

∏
αβ

dFαβ

∏
α

dEα

× exp

[
N

(
αG3({qαβ}) + GJ ({Eα}, {Fαβ}) −

∑
α<β

Fαβqαβ

)]
(8)

where

exp[αG3({qαβ})] ≡
∫ ∏

α

dλα

∏
α

dxα exp

[∑
α

(βg
(
λα) + ixαλα − 1

2x2
α

) −
∑
αβ

qαβxαxβ

]
× exp[GJ ({Eα}, {Fαβ})] ≡

∫ ∏
α

Jα exp

[∑
α

Eα(1 − J 2
α ) +

∑
αβ

FαβJαJβ

]
.

(9)

Hereqαβ ≡ 1
N

∑
i J

α
i J

β

i is a measure of the similarity of two replicated networks that both
minimize the free energy, andFαβ is a conjugate variable toqαβ .

We solve equation (8) by the saddle-point method in the limitN → ∞. In order to
do this we need to make an ansatz about the form of the solution. The simplest ansatz is
replica symmetry (RS), in which we takeEα = E ∀ α andqαβ = q, Fαβ = F ∀ α 6= β. This
has been shown [2–4] to be the correct solution to the saddle-point equations forα 6 αc;
however, for the perceptron above saturation the replica-symmetric solution is unstable and
a different ansatz must be used. The simplest non-replica-symmetric ansatz for the solution
of equations (7), (8) is given by one-step replica-symmetry breaking (one-stepRSB or RSB1)
[6] in which we assume the matrixqαβ has a block structure, with blocks of sizem × m

such that the diagonal blocks have 1 in their diagonal entries andq1 on their off-diagonal,
while the off-diagonal blocks haveq0 in all their entries. In other words

qαβ = 1 α = β

qαβ = q0 if the integer parts ofα/m andβ/m are the same (10)

qαβ = q1 otherwise.

Majer et al [3] have shown that within theRSB1 subspace, the pattern-choice averaged
minimum energy for any cost functiong(λ) in the limit β → ∞, q0 → 1 is

e = 〈Emin〉
N

= lim
β→∞

〈f 〉 = lim
β→∞

max
γ,q1,w

(
q1

2γ (1 + w1q)
+ ln(1 + w1q)

2wγ

+ α

wγ

∫
Dz1 ln

∫
Dz0 exp

(
−wγ

[
g(λ0) + (λ0 − z1

√
q1 − z0

√
1q)2

2γ

]))
(11)



3066 W Whyte and D Sherrington

whereγ ≡ β(1 − q0), w ≡ βm/γ andλ0 minimizes the expression in the square bracket
for given values ofz0, z1, γ, q1, 1q ≡ (1 − q1). If we write z = z1

√
q1 + z0

√
1q, this

minimization requires us to invert the functionz(λ) = γg′(λ) + λ. For the perceptron
above saturation, this inverse function is multiple-valued and we are required to perform a
Maxwell’s construction in order to make it single-valued. This, in turn, gives a discontinuity
in λ0(z), whose effects on the stability of theRSB1 solution will be discussed later.

Although the problem was formulated in terms of energy minimization, the solution
(11) instead requires us to maximize a quantity. This is due to the fact that in the limit
n → 0 the numbern(n − 1) of independent elements of the matrixqαβ becomes negative.
A given level ofRSB will therefore be unstable if the next level ofRSB gives a higher value
for the minimum energy, and therefore the minimum number of errors.

The maximization with respect toγ, q1, w in (11) must be performed numerically. This
has been done by [3, 4], who have found that whenever the perceptron is above saturation
the RSB1 solution gives a higher value for the minimum error than theRS solution, as
might be expected from the fact [2] that theRS solution is unstable throughout this region.
We now take the work of these studies a step further by investigating the stability of the
RSB1 solution, analytically and numerically; the analysis suggests strongly that fullRSB is
necessary whenever the perceptron is above saturation.

3. Stability of the one-stepRSB solution

We now look at the fluctuations of theRSB1 solution around the saddle-point values. A
change in the stability of theRSB1 solution is indicated by a change in the sign of one of
the eigenvalues of the matrix of the quadratic fluctuations at the saddle point [1, 7]. We
define this matrixH as follows: the submatricesHqq

(αβ)(γ δ) andH
Eq

α(βγ ) are defined by

H
qq

(αβ)(γ δ) ≡ ∂28

∂qαβ∂qγ δ

H
Eq

α(βγ ) ≡ ∂28

∂Eα∂qβγ

. (12)

The other submatrices,HFF
(αβ)(γ δ), H

qF

(αβ)(γ δ), HFE
(αβ)γ , HEE

αβ etc, are defined analogously.
The evaluation of the eigenvalues is complicated; however, we can make use of several
simplifying arguments, used originally by Dorotheyev [8] for investigating the stability of the
RSB1 solution for a pseudo-inverse synaptic matrix. First, we observe that the submatrices
are invariant under the action of the hierarchical tree (HT) group. This group is defined in
appendix 1 of [8] and in [9]. We may represent it as

Sn/m⊗̂(Sm)⊗n/m (13)

with (Sm)⊗n/m being the direct product of thek-element permutation group with itselfn/m

times, and⊗̂ being the semidirect product. We can thus express the eigenvectors in terms of
the bases of the irreducible representations of theHT group. We further reduce the number
of calculations necessary by using the fact that instability only arises in the direction of
the replicon-like eigenvectors. InRSB1 there are four families of these eigenvectors, which
we call R(a), R

(e)

1 , R
(e)

2 , R
(e)

3 ; their definition and the calculation of the corresponding
eigenvaluesγ R(a)

q , γ R(a)

F , etc are given in the appendix. In order for theRSB1 solution to be
stable, the sign of each eigenvalue of the matrix(

αγ R
q 1

1 γ R
F

)
(14)

must be the same as its sign for a known stable solution, for anyR ∈ {R(a), R
(e)

1 , R
(e)

2 ,
R

(e)

3 }. We know that theRSB1 solution is stable in the limitα → 0, in which case all the
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eigenvalues in question are−1. We therefore need to find at what point any eigenvalue
changes sign, or in other words where

αγ R
q γ R

F > 1 . (15)

We now show that this occurs at the critical storage capacity. Our proof forRSB1 parallels
that of Bouten [2] for the instability of theRS solution.

We consider the familyR(a), whose eigenvalues, following the notation used in the
appendix, can be written as

γ R(a) = K1 − 2K2 + K3

= [[([
f 2

]
f

− [f ]2
f

)2]
0

]
1 . (16)

Noting that

d

dz1

(
[1]m−1

f [f ]f
) = −i

√
f1

(
(m − 1)[1]m−2

f [f ]2
f + [1]m−1

f

[
f 2

]
f

)
(17)

wheref1 = q1 if f = x andf1 = F1 if f = J , it is easy to see that in the limitm → 0,

γ R(a)

y = − 1

f1

∫
Dz0

(
d

dz1
[1]m−1

f [f ]f
)2

[1]−m
f∫

Dz0[1]mf


= 1

m2f 2
1

∫
Dz0

(
d2

dz2
1
[1]mf

)2
[1]−m

f∫
Dz0[1]mf

 (18)

wheref = x for y = q andf = J for y = F . Using these, it is straightforward to obtain
γ R(a)

F = (1 − q0)
2 and hence

αγ R(a)

F γ R(a)

q = α

w2q2
1

∫
Dz0

(
d2

dz2
1
[1]mx

)2
[1]−m

x∫
Dz0[1]mx

 . (19)

The proof of instability above the critical storage capacity follows from there being a
discontinuity in d/dz1([1]x). From the appendix,

d

dz1
[1]x = 1

2

eG

(1 − γg′′(λ0))3/2
γg′′′(λ0)

dλ0

dz1

+ eG

(1 − γg′′(λ0))3/2

(
−wγ (g′(λ0)

dλ0

dz1
− 1

γ

d

dz1
(λ0 − √

q1z1 +
√

1qz0)

)
(20)

whereG ≡ w(γg(λ0)−(λ0−√
q1z1+

√
1qz0)

2/2). For the cost functioñg(λ) (equation (6))
under consideration here,λ0 is easy to evaluate as a function oft ≡ √

q1z1 + √
1qz0:

λ0 = t for t < κ −
√

2γ

λ0 = κ for κ −
√

2γ < t < κ (21)

λ0 = t for κ < t .

Since forα > αc there is a discontinuity inλ0 at t = κ − √
2γ , its first and therefore its

second derivative contain a delta function at this point. Since this delta function is then

squared, it will contribute an infinite positive weight toγ
R

(a)
2

q . Therefore, whenever there is
a discontinuity inλ0, which is the case in the entire region above saturation, the sign of
αγ R(a)

F γ R(a)

q is positive. We can therefore say that the theRSB1 ansatz is unstable.
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Let us now consider qualitatively the situation for further levels of replica-symmetry
breaking. These will still produce a Hessian matrix that is invariant under some
generalization of theHT group; therth level of RSB will have some replicon-like eigenvalue
that can be expressed as

γq = c

. . .




∫
Dz0

(
d2

dz2
1
[1]mx

)2
[1]−m

x∫
Dz0[1]mx




1

. . .


r

(22)

to which a generalization of the previous argument can be applied, showing that any replica-
symmetry broken solution in which this term has a finite weight will be unstable. This
will be the case if there is only a finite degree ofRSB. We therefore conclude that for
a perceptron above saturation the only exact solution is given by full replica-symmetry
breaking. A numerical study of the full replica-symmetry broken solution is, of course,
outside the scope of this paper; however, in the next section we perform a numerical study
of the two-stepRSB solution, demonstrating that throughout the region above saturation it
gives a higher minimum number of errors than theRSB1solution and providing confirmation
of the RSB1 result of this section.

4. Two-step replica-symmetry breaking

Two-step replica-symmetry breaking (RSB2) is a relatively straightforward, but numerically
complicated, extension ofRSB1 [6]. We change our notation in line with the convention
introduced in the appendix, so

qαβ = q[α1,α2,α3],[β1,β2,β3]

α1, β1 = 1, . . . , n/m1 α2, β2 = 1, . . . , m1/m2 α3, β3 = 1, . . . , m2 .
(23)

Under this notation, theRSB2 ansatz becomes

q[α1,α2,α3],[β1,β2,β3] = 1 if α1 = β1 andα2 = β2 andα3 = β3

q[α1,α2,α3],[β1,β2,β3] = q0 if α1 = β1 andα2 = β2 andα3 6= β3

q[α1,α2,α3],[β1,β2,β3] = q1 if α1 = β1 andα2 6= β2

q[α1,α2,α3],[β1,β2,β3] = q2 if α1 6= β1 .

Considering the general cost function (5) and using standard techniques [1, 3, 5] we
can derive the following expression for the averaged minimum error in the limitβ → ∞,
q0 → 1:

e = lim
β→∞

max
γ,q1,q2,w1,w2

[
q2

2γ (1 + w110 + w211)

+ ln(1 + w110)

2w1γ
+ ln[1 + w211/(1 + w110)]

2w2γ

+ α

w2γ

∫
Dz2 ln

∫
Dz1

[∫
Dz0

× exp

(
−w1γ

[
g(λ0) + (λ0 − z2

√
q2 − z1

√
11 − z0

√
10)

2

2γ

])]w2/w1]
.

(24)



Replica-symmetry breaking in perceptrons 3069

Here γ = β(1 − q0) as before andwi ≡ βmi/γ ; we also use the shorthand10 =
q0 − q1, 11 = q1 − q2. It can easily be seen that if we takeq1 = q2, 11 = 0 and
this formula reduces to theRSB1 case.

In the case under investigation here, with the cost function given by (6), the innermost
integral reduces to

Iz0 =
exp

(
1
2

−w1A
2

1+w110

)
√

(1 + w110)

[
H

(
A − √

2γ (1 + w10)√
10(1 + w110)

)
− H

(
A√

10(1 + w110)

)]
+ exp(−w1γ )H

(√
2γ − A√

10

)
+ H

(
A√
10

)
(25)

where A = κ − z2
√

q2 − z1
√

11 and H(x) = ∫ ∞
x

Du. We evaluated (24) for a range
of values ofα and for κ = 1, performing the maximization numerically. The results
are shown in figures 1–5. The transition fromRSB1 to RSB2 causes the output errore to
increase by an amount that is typicallyO(10−4); this is small, but greater than the numerical
tolerance of our minimization procedure which isO(10−6). Any lack of smoothness in the
curves presented is due to a combination of two factors: first, the ‘valleys’ for this problem
prove to be relatively wide; second, the function varies much faster in general with respect
to γ, q1, q2 than w1, w2, meaning that the choice of starting values ofw1, w2 is of great
importance.

We find that throughout the region of replica-symmetry instability theRSB2 solution
gives a greater value for the minimum error than theRSB1 solution, showing thatRSB1 is
not the true solution anywhere in this region. Figure 1 shows the minimum errors evaluated
within RSB1 and RSB2 and figure 2 shows their differences. The other figures show the
behaviour of the maximizing values ofγ, q1, q2, w1, w2, with the correspondingRSB1

values for comparison. Asγ ≡ limβ→∞ β(1 − q0), and as we expect thatq0 will increase
with increasing levels ofRSB, γ rsb2 should be less thanγ rsb1; our results (figure 3) confirm

Figure 1. The minimum errore for RSB1 (dotted curve) andRSB2 (full squares), forκ = 1.
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Figure 2. The difference between the minimum errors obtained for theRSB1 and theRSB2

solution, measured in units of 10−4. The curve is a guide to the eye.κ = 1.

Figure 3. γ rsb1 (dotted curve) andγ rsb2 (full squares). The full curve is a guide to the eye.
κ = 1.

this. A decrease inγ corresponds to a slight narrowing of the gap in the distribution of
local stabilities, which is of magnitude

√
2γ [1, 3]. We have calculated this distribution but

the result is sufficiently similar to theRSB1 result that we do not reproduce it here. We find
thatq1 andq2 are respectively higher and lower thanqrsb1

1 (figure 4), and thatw1γ andw2γ

are, respectively, higher and lower thanwrsb1
1 γ rsb1 (figure 5), as would be expected.
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Figure 4. qrsb1
1 (dotted curve),qrsb2

1 (upper set of points) andqrsb2
2 (lower set of points). The

full curves are guides to the eye.κ = 1.

Figure 5. wrsb1
1 (dotted curve),wrsb2

1 (upper set of points) andwrsb2
2 (lower set of points). The

full curves are guides to the eye.κ = 1.

5. Conclusions

It has been known for some time that some degree of replica-symmetry breaking is necessary
for an exact solution to the problem of minimum-error storage of patterns in a perceptron
above saturation. We have shown thatRSB1 is inadequate and suggest that an exact solution
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requires fullRSB. Our results imply that any finite level of replica-symmetry breaking for
any cost functiong(λ) will be unstable if the functionλ0(z, qi, γ ) contains a discontinuity.
The result for the perceptron is backed up by a numerical investigation of the global stability
of the RSB1 solution, showing that it will not maximize the minimum error anywhere in the
region above saturation. This numerical study has, however, also shown that the observable
effects of the transition fromRSB1 to RSB2 are very small compared to the effects of the
transition fromRS to RSB1, so that for most purposesRSB1 may be considered sufficient for
this case.

This paper has concentrated on the free energy of the perceptron trained with the
Gardner–Derrida cost function. This cost function is somewhat special, in that the
discontinuity inλ0 is present throughout the regionα > αc. For cost functions such as
the perceptron cost function,g(κ − λ) = (κ − λ)θ(κ − λ), this is not the case, and the
transition toRSB2 is still an open question.
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Appendix

This discussion in large part reproduces and expands on the results of [8], making those
changes necessary to make it relevant to the present case. By consideration of the group
orbits, we can obtain the different matrix elements of the submatricesHqq, HFF . We change
our notation as follows:

qαβ = q[α1,α2],[β1,β2] (A1)

whereα1, β1 label the blocks andα2, β2 label the individual matrix elements within the
blocks. Under this notation, theRSB1 ansatz becomes

q[α1,α2],[β1,β2] = 1 if α1 = β1 andα2 = β2

q[α1,α2],[β1,β2] = q0 if α1 = β1 andα2 6= β2 (A2)

q[α1,α2],[β1,β2] = q1 if α1 6= β1 .

We make the corresponding changes in notation forFαβ , H(αβ)(γ δ). The values of those
submatrix elements which are relevant to the calculation of the replicon-like eigenvalues
can be expressed as follows (subscripts refer to variables being averaged over, superscripts
are exponents):

H[1,1][1,2][1,1][1,2] ≡ K1

= [[[
f 2

]2
f

]
0

]
1 − [[

[f ]2
f

]
0

]2
1

H[1,1][1,2][1,1][1,3] ≡ K2

= [[[
f 2

]
f

[f ]2
f

]
0

]
1 − [[

[f ]2
f

]
0

]2
1

H[1,1][1,2][1,3][1,4] ≡ K3

= [[
[f ]4

f

]
0

]
1 − [[

[f ]2
f

]
0

]2
1

H[1,1][2,1][1,1][2,2] ≡ L1

= [[[
f 2

]
f

]2
0

]
1 − [[

[f ]f
]2

0

]2
1

H[1,1][2,1][1,1][2,2] ≡ L2 (A3)
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= [[[
f 2

]
f

]
0

[
[f ]f

]2
0

]
1 − [[

[f ]f
]2

0

]2
1

H[1,1][2,1][1,2][2,2] ≡ L3

= [[
[f ]2

f

]2
0

]
1 − [[

[f ]f
]2

0

]2
1

H[1,1][2,1][1,1][3,1] ≡ L4

= [[
[f ]2

f

]2
0

]
1 − [[

[f ]f
]2

0

]2
1

H[1,1][2,1][1,2][3,1] ≡ L5

= [[
[f ]2

f

]
0

[
[f ]f

]2
0

]
1 − [[

[f ]f
]2

0

]2
1

H[1,1][2,1][3,1][4,1] ≡ L6

= [[
[f ]f

]4
0

]
1 − [[

[f ]f
]2

0

]2
1

wheref ≡ x for Hqq , f ≡ J for HFF , and the averages [· · ·]1, [· · ·]0, [· · ·]J , [· · ·]x are
defined as follows:

[h]1 =
∫

Dz1 h(z1)[ s∏
i=1

[
hi

]
f

]
0

=
∫

Dz0 [1]m−s
f

∏s
i=1[hi ]f∫

Dz0 [1]mf

[h]J =
∫

dJ e(− 1
2 J 2(2E−F0)+iJ (

√
F1z1+

√
F0−F1z0)+E)h(J )

[h]x =
∫

dλ dx e(βg(λ)+ix(λ−√
q1z1−√

q0−q1z0)− 1
2 (1−q0)x

2)h(x) .

(A4)

The eigenvaluesγ R of the replicon-like eigenvector familiesR are as follows:

R(a) : γ R(a) = K1 − 2K2 + K3

R
(e)

1 : γ R
(e)
1 = L1 − 2L2 + L3 + 2m(L2 − L3 − L4 + L5) + m2(L3 − 2L5 + L6)

R
(e)

2 : γ R
(e)
2 = L1 − 2L2 + L3

R
(e)

3 : γ R
(e)
3 = L1 − 2L2 + L3 + m(L2 − L3 − L4 + L5) .

(A5)

We can also evaluate [1]J and (in the limitβ → ∞) [1]x . These are

[1]J = 1√
2E − F0

exp

(
E − (

√
F1z1 + √

F0 − F1)
2

2(2E − F0)

)
[1]x = 1√

1 − γg′′(λ0)
exp

(
−wγ

[
g(λ0) + 1

2γ
(λ0 − √

q1z1 −
√

1qz0)
2

])
.

(A6)
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