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Abstract. In the problem of optimization of pattern stabilization in perceptrons the replica-
symmetric ansatz is known to be mathematically unstable for storage capacgrester than
someac. In this paper we demonstrate that toigreater thany the one-step replica-symmetry
broken &sp) solution is also unstable. We further show that in this region,Hstis necessary

for an exact solution. Direct evaluation of the two-stege solution yields a minimum storage
error which is only slightly greater than the one-stegs, which itself is greater than that given
by the (unstable) replica-symmetric ansatz by a much larger amount.

1. Introduction

A central study in the field of statistical mechanics of neural networks is the use of the
perceptron as an associative memory. A perceptron is a device which associates an output
S, with an input vectos;}, i = 1... N, by a rule of the formS, = f(J - S). In the case

of the binary perceptronf (J - S) = sign(J - S), and the problem of interest is to store a

set of p patterns¢” by finding a synaptic vectod such that for as many of th&*’s as
possible the statement

‘%Lutput= sign(J - &) (1)

is true. It is hoped that the perceptron which stores the patterns correctly will then give the

correct output not just when the input corresponds to a stored pattern but also when the input
is a corrupted or noisy version of one of the stored patterns; this is known as associativity.

In order to improve the associativity one introduces a more stringent condition on the stored

patterns; for a giver > 0, we now attempt to find d that satisfies

‘i'-tl;utput= sign(J - " — k) (2)

for as many patterns as possible (to avoid satisfying this criterion by a simple scalihg of
we introduce the conditiod - J = N). Although fewer patterns may now be stored so as
to satisfy this condition, it is expected that those patterns now stored will be more robust
against corruption of the input data, giving the desired improvement in associativity.

The behaviour of the network depends on the storage matiee p/N and the
parameterc. For any value ofc, there exists am.(x) such that the network can store
all the patterns correctly only i < ac. Fora > o the interesting question is to determine
what fraction of the patterns can be stored correctly.

This calculation is typically carried out using the well known ‘replica method’. To obtain
results using this method, one must make an ansatz for the form of the replica solution as
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the number of replicas tends to 0. Gardner and Derrida [1] considered the replica-symmetric
(R9) ansatz and showed it to be stable agamss fluctuations fore < «c. However, for

o > ac the RS solution is unstable [1, 2] andsB is necessary. This result has been borne
out by numerical studies by Majet al [3] and Erichseret al [4]. Both of these numerical
studies commented on the necessity for a transition to further levels of replica-symmetry
breaking, as shown by the incorrect behaviour of various parametars-aso, but neither
investigated at what value of this transition occurred.

In this paper, we investigate the stability of the one-step replica-symmetry broken
solution (one-steprsB or RSB1) and show that the argument which demonstrates the
instability of this solution can be generalized to demonstrate the instability of any finite
level of replica-symmetry breaking. We provide numerical evidence for this by showing
that whena > o and the number of replicas goes to zero, the two-st#pansatz satisfies
the replica saddle-point equations better than rBe1 ansatz. In general, however, the
difference in the free energies ©(102) compared to the difference between the free
energies for replica symmetry and one-sksg, implying that for most practical purposes
one-stefrsB will be adequate.

2. The model and the one-stersB solution

The system we are interested in is a perceptron Witimput nodes (labelled=1, ..., N)
and one output node, obeying the update rule

Soutput = sign( Z JiSi> S; € {£1} 3

with the {J;} constrained by the spherical rufg; J2 = N. This perceptron is trained to
store correctly as many as possible of an ensemblg ef « N patterns{&”}, drawn at
random from{z1}". We define the ‘aligning field\* of a patterné” by

M= Eupu ) JiEl /1] ©)

For somex, usually taken to be> 0, a patterr¢” is considered to be stored correctly if its
aligning fieldA* > «.
We formulate the problem as ‘energy’ minimization, defining the energy as

E=Y g ()
I

and, wherever possible, present formal results in terms of a general cost fuactjor-or
the present explicit case, however, the cost function is

g =gM) =0k —2). (6)

The minimized energy therefore gives the minimum possible number of patterns that can
be stored incorrectly, in the sense defined above. This is zaeroisfless than a critical
storage capacityc(x).

We calculate this quantity by obtaining the free energy of the system,

. 1
fgn == lim o nz

_ ; 1 K 2 —BE
= _»Ji"oom'”fgdj"é((‘]) —N)e 7)
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and finally taking the limit8 — oo (in which E = Nf). The free energy in this limit
gives the fraction of patterns that are stored incorrectly, and we thus identify it with the
output error of the perceptron. In the usual fashion, the free energy is assumed to be
self-averaging over the disorder in the pattef&$}. In order to perform this average, we
employ the replica trickIn Z) = lim,_.o({Z") — 1)/n.

We now review some known results for this problem [1-4]. Using standard techniques
[1,5] one can expres&Z™) in the form

(Z" _[1_[ dge ﬂeN<1>(quﬂ)
[ ]‘[ A ]‘[ dFyp ]‘[ dE,

x exp|: (aGA({CIaﬂ}) + Gr({E}, {Fup)) — Z Faﬁ%ﬁ)] (8)

a<pf

where

expleGa({gus))] = f ﬂ die H dxy eXp[Z(ﬂg(/\a) +ixgha — 3X5) — anﬁxaxﬂ}
af

x explG s (Eo), {Fap)] = / H Ju exp[ZE @-J2+ ZFO,,«;J Jﬁ}
©)

Hereg.,s = + 3, J¢J! is a measure of the similarity of two replicated networks that both
minimize the free energy, anélz is a conjugate variable t@,g.

We solve equation (8) by the saddle-point method in the lifit> co. In order to
do this we need to make an ansatz about the form of the solution. The simplest ansatz is
replica symmetryRs), in which we takeE, = E Va andg.s = ¢, Fop = F Ya # B. This
has been shown [2-4] to be the correct solution to the saddle-point equatiamsJar;
however, for the perceptron above saturation the replica-symmetric solution is unstable and
a different ansatz must be used. The simplest non-replica-symmetric ansatz for the solution
of equations (7), (8) is given by one-step replica-symmetry breaking (onerstamr RSB1)
[6] in which we assume the matrix,s has a block structure, with blocks of size x m
such that the diagonal blocks have 1 in their diagonal entriesgamh their off-diagonal,
while the off-diagonal blocks havg, in all their entries. In other words

gop =1 a=p
dop = 40 if the integer parts of¢/m and 8/m are the same (10)
dup = q1 otherwise

Majer et al [3] have shown that within thesB1 subspace, the pattern-choice averaged
minimum energy for any cost functiog(1) in the limit 8 — oo, g0 — 1 is

_ (Emin) _ . q1 In(1+ wAgq)
€= N ﬂliﬂ&(ﬂ ﬂlinoo anz?w(Zy(l—i- wAq) 2wy
+7/D21|H/DZO exp( w)/l:g()»o)-i- Zl«/;_ZO 9) :|))
Y

(11)
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wherey = 8(1 — qo), w = Bm/y and Ao minimizes the expression in the square bracket
for given values ofzg, z1, ¥, g1, Ag = (1 — q1). If we write z = z1,/q1 + z04/Aq, this
minimization requires us to invert the functias{a) = y¢’(x) + A. For the perceptron
above saturation, this inverse function is multiple-valued and we are required to perform a
Maxwell's construction in order to make it single-valued. This, in turn, gives a discontinuity
in Ao(z), whose effects on the stability of tlrsB1 solution will be discussed later.

Although the problem was formulated in terms of energy minimization, the solution
(11) instead requires us to maximize a quantity. This is due to the fact that in the limit
n — 0 the number(n — 1) of independent elements of the matgy; becomes negative.

A given level ofrsB will therefore be unstable if the next level rEB gives a higher value
for the minimum energy, and therefore the minimum number of errors.

The maximization with respect tg, g1, w in (11) must be performed numerically. This
has been done by [3, 4], who have found that whenever the perceptron is above saturation
the RSB1 solution gives a higher value for the minimum error than Heesolution, as
might be expected from the fact [2] that tRe solution is unstable throughout this region.
We now take the work of these studies a step further by investigating the stability of the
RSB1 solution, analytically and numerically; the analysis suggests strongly thakd$slis
necessary whenever the perceptron is above saturation.

3. Stability of the one-steprsB solution

We now look at the fluctuations of thess1 solution around the saddle-point values. A
change in the stability of thessi solution is indicated by a change in the sign of one of
the eigenvalues of the matrix of the quadratic fluctuations at the saddle point [1,7]. We

define this matrixe as follows: the submatricesl’%, , and H,%  are defined by
G *®
Hapyod = 57 a0 ) = S pe (12)
Y 99ap9qys v 0E,dqpy

The other submatricest s, H(‘fx;)(yé)’ Hig, Hy etc, are defined analogously.

The evaluation of the eigenvalues is complicated; however, we can make use of several
simplifying arguments, used originally by Dorotheyev [8] for investigating the stability of the
RSB1 solution for a pseudo-inverse synaptic matrix. First, we observe that the submatrices
are invariant under the action of the hierarchical tne®) @roup. This group is defined in

appendix 1 of [8] and in [9]. We may represent it as
Sn/m®(Sm)®”/m (13)

with (S,,)®"/™ being the direct product of the-element permutation group with itself m

times, and® being the semidirect product. We can thus express the eigenvectors in terms of
the bases of the irreducible representations ofthgroup. We further reduce the number

of calculations necessary by using the fact that instability only arises in the direction of
the replicon-like eigenvectors. seithere are four families of these eigenvectors, which
we call R@, R, RY, RY; their definition and the calculation of the corresponding
eigenvaluey X', y X, etc are given in the appendix. In order for thes1 solution to be
stable, the sign of each eigenvalue of the matrix

ozqu 1
( 1 mf) 4

must be the same as its sign for a known stable solution, forRry {R@, R\, R,
RY’}. We know that therse1 solution is stable in the limitz — 0, in which case all the
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eigenvalues in question arel. We therefore need to find at what point any eigenvalue
changes sign, or in other words where

ayvi = 1. (15)

We now show that this occurs at the critical storage capacity. Our proatder parallels
that of Bouten [2] for the instability of thes solution.

We consider the familyR®, whose eigenvalues, following the notation used in the
appendix, can be written as

v = K1 — 2K, + K3
=[] = 1) L,)s- (16)
Noting that
d .
d—Zl([ll?’l[f]f) = =iy fi(m = DIF 2117 + 107 7],) 17)

where f; = g1 if f =x and f; = F1 if f = J, itis easy to see that in the limit — O,
m— 2 —m
o1 { J Dzo( & 1217 A),) 14 }

YA J Doty
1 [/ s
AN (18)

where f = x for y =¢ and f = J for y = F. Using these, it is straightforward to obtain
yR“ = (1 - go)? and hence
d? m\2p11—
o R@_R@ fDZO(I{[l]X) [1]xm
e T wegz | [ Daltly
The proof of instability above the critical storage capacity follows from there being a
discontinuity in ddz;([1],). From the appendix,

d 1 e“ d
T[l]x I
21

(19)

"

= 2= ygGonee’s M

+ & ( 0020 _ L9 Vit Vag )>
= 0 |(—w _ = _
(1— )/g//()»o))3/2 Y& (4o dz; y dzy 0 qi1i1 qzo0

Ao
dzq

(20)
whereG = w(yg(ko)—(AO—@zl—i—«/quO)z/Z). For the cost functiog (1) (equation (6))
under consideration hergg is easy to evaluate as a functionrof& ,/g171 + /Agzo:
A=t for r<x—+/2y
Ao =K for k —\/2y <t <k (21)
A=t for v« <t.

Since fora > «c there is a discontinuity iy atz = x — /2y, its first and therefore its
second derivative contain a delta function at this point. Since this delta function is then

(a)
squared, it will contribute an infinite positive weight ;t»éez . Therefore, whenever there is
a discontinuity inig, which is the case in the entire region above saturation, the sign of

ayR” qu“” is positive. We can therefore say that the #8B1 ansatz is unstable.
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Let us now consider qualitatively the situation for further levels of replica-symmetry
breaking. These will still produce a Hessian matrix that is invariant under some
generalization of theiT group; therth level of RsB will have some replicon-like eigenvalue
that can be expressed as

I Dz (&) 1l

J Dzo[1]7 (2)

Vg =C
1 r

to which a generalization of the previous argument can be applied, showing that any replica-
symmetry broken solution in which this term has a finite weight will be unstable. This
will be the case if there is only a finite degree réB. We therefore conclude that for

a perceptron above saturation the only exact solution is given by full replica-symmetry
breaking. A numerical study of the full replica-symmetry broken solution is, of course,
outside the scope of this paper; however, in the next section we perform a numerical study
of the two-steprsB solution, demonstrating that throughout the region above saturation it
gives a higher minimum number of errors than #es1solution and providing confirmation

of the RsB1result of this section.

4. Two-step replica-symmetry breaking

Two-step replica-symmetry breakinggB?) is a relatively straightforward, but numerically
complicated, extension aise1 [6]. We change our notation in line with the convention
introduced in the appendix, so

Gop = qla1,az,05],[p1.82. 8] (23)
a;,fr=1,....,n/m az, Bo=1,...,my/my a3, Bz3=1,...,my.

Under this notation, thesB2 ansatz becomes

Qlar.ar.es).[fr.fops] = 1 if og = g1 andaz = B, andaz = B3
Qla.cn,as].[Br. 2. ps] = GO if a1 = B1 anda, = B2 andasz # B3
Qlos.c0.03].[B1. B Ba] = G1 if a1 = B1 anday # B2
qlo,az,03],[1.82.83] = 42 if oy # B1.

Considering the general cost function (5) and using standard techniques [1, 3,5] we
can derive the following expression for the averaged minimum error in the it oo,
qo — 1:

q2
2)/(1 + wle + U)2A1)
IN(1 4+ w1Ag) In[l + woA1/(1+ wle)]
+ +
2wy 2way

o
+/D12|n/D11[/ Dzo
way

(ho — 22/@2 — 214/ B1 — ZOJAT))ZD]“’”’“]
2y ’

e= lim max [

B—>00¥.,q1.92, w1, W2

X exp<—w1y [g()»o) +
(24)
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Here y = B(1 — qo) as before andw; = Bm;/y; we also use the shorthantly, =
qo — q1, A1 = q1 — g». It can easily be seen that if we take = ¢», A; = 0 and
this formula reduces to thesB1 case.
In the case under investigation here, with the cost function given by (6), the innermost
integral reduces to

B exp(%ll’fjffo) [H <A — S+ on)> o < A >]

L, = A
) A/ (1+ w1Ap) v Ao(1+ wiAop) v Ao(1+ wiAp)
V2 A A

where A = k — z2./q2 — z2/A1 and H(x) = f;o Du. We evaluated (24) for a range
of values ofa and forx = 1, performing the maximization numerically. The results
are shown in figures 1-5. The transition fra¥8B1 to RSB2 causes the output errerto
increase by an amount that is typicaff(10~%); this is small, but greater than the numerical
tolerance of our minimization procedure which@10-%). Any lack of smoothness in the
curves presented is due to a combination of two factors: first, the ‘valleys’ for this problem
prove to be relatively wide; second, the function varies much faster in general with respect
to v, q1, g2 than wj, wp, meaning that the choice of starting valuesuaf, w, is of great
importance.

We find that throughout the region of replica-symmetry instability #ss2 solution
gives a greater value for the minimum error than HsB1 solution, showing thaksB1 is
not the true solution anywhere in this region. Figure 1 shows the minimum errors evaluated
within RSB1 and RsB2 and figure 2 shows their differences. The other figures show the
behaviour of the maximizing values of, g1, ¢2, w1, wp, with the correspondingrss1
values for comparison. Ag = limg_., B(1 — qo), and as we expect thap will increase
with increasing levels oksB, "2 should be less thap™P%; our results (figure 3) confirm

0.5 T T T
L 7,,.."".':
0.4+ ’_,l"'. |
L A.‘,v. 4
.
,'."
L '_." 4
0.3+ I -
F ..f 4
© o
F -
0.2¢ ]
F -
0.1F ]
L . i
I v
0 i | | |
0 1 2 3 4
X

Figure 1. The minimum error for rsB1 (dotted curve) anessz2 (full squares), for = 1.



3070 W Whyte and D Sherrington

10—
O gL i
- L
)
@) L
~—
* 6r
VS [
~—
Q0
n L
o AL
a
< L
S
O L
SN——
0
0

Figure 2. The difference between the minimum errors obtained for rhe1 and therss2
solution, measured in units of 16. The curve is a guide to the eye.= 1.

15F

0.5

Figure 3. y'1 (dotted curve) and/"sP2 (full squares). The full curve is a guide to the eye.
k=1

this. A decrease iy corresponds to a slight narrowing of the gap in the distribution of
local stabilities, which is of magnitudg?2y [1, 3]. We have calculated this distribution but
the result is sufficiently similar to thess1result that we do not reproduce it here. We find
thatq, andg, are respectively higher and lower th@ﬁbl (figure 4), and thatv;y andw,y

are, respectively, higher and lower tha#°ly P! (figure 5), as would be expected.
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Figure 4. ¢isP? (dotted curve)4isP? (upper set of points) anglP? (lower set of points). The
full curves are guides to the eye.= 1.

60

20

Figure 5. w! (dotted curve)w!sP? (upper set of points) ana?2 (lower set of points). The
full curves are guides to the eye.= 1.

5. Conclusions

It has been known for some time that some degree of replica-symmetry breaking is necessary
for an exact solution to the problem of minimum-error storage of patterns in a perceptron
above saturation. We have shown tRag1is inadequate and suggest that an exact solution
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requires fullrse. Our results imply that any finite level of replica-symmetry breaking for
any cost functiorg (1) will be unstable if the function.g(z, ¢;, ) contains a discontinuity.

The result for the perceptron is backed up by a numerical investigation of the global stability
of the RsB1 solution, showing that it will not maximize the minimum error anywhere in the
region above saturation. This numerical study has, however, also shown that the observable
effects of the transition fronRsB1to RSB2 are very small compared to the effects of the
transition fromrs to RSB1, S0 that for most purposesss1 may be considered sufficient for

this case.

This paper has concentrated on the free energy of the perceptron trained with the
Gardner—Derrida cost function. This cost function is somewhat special, in that the
discontinuity iniq is present throughout the regi@n > «.. For cost functions such as
the perceptron cost functiog,(x — A) = (x — A)8(k — A), this is not the case, and the
transition torsB2is still an open question.
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Appendix

This discussion in large part reproduces and expands on the results of [8], making those
changes necessary to make it relevant to the present case. By consideration of the group
orbits, we can obtain the different matrix elements of the submatf¢és H**. We change

our notation as follows:

Qop = qas,a2).[B1.82] (A1)

where ay, 81 label the blocks and,, B, label the individual matrix elements within the
blocks. Under this notation, thesB1 ansatz becomes

lar,00),[Br.B2] = 1 if g = B1 andoy = B2
lar.e2l.[p1.p2] = 90 if ay = p1 anday # B2 (A2)
Glar.ar)[B1.82) = 41 if oy # B1.

We make the corresponding changes in notationHgy, Hgs)s. The values of those
submatrix elements which are relevant to the calculation of the replicon-like eigenvalues
can be expressed as follows (subscripts refer to variables being averaged over, superscripts
are exponents):

Hpp a2y = Ka

= (1[0 2], — [T 1005
Hi1,101,2511,1902,3) = K2

= [[[/1, L9 ))s — (L7 Lo)5
Hiy 111,2)11,311.41 = K3

= [[LA31o]: - (LA ):
Hi1 q2,111,1912,2) = L1

= (1021, To), — [T 101
Hp 22,21 = Lo (A3)
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= [[[72), JoltA1 1), - L2 TG
Hpy 12,111,2)2,21 = L3
2
= ([LAA8e) ~ [0 | )2
Hi1 1yi2,1011,133,1] = L4

= [[216), — [ 51
Hi1 1912,1011,2)3,1] = Ls

= ([0 Do) - (L))
Hi1 2,134, = Le

= ({1 T} — (L1 Tk
where f = x for H%, f = J for H'F, and the averages-[]+,[--]o.[-- ]/, [ - -]« are
defined as follows:

[h]1=/DZ1h(Zl)
i1 o J Dzo[1]} (A4)
[h]; = /d] e(—%J2(2E—Fo)+iJ(x/Eu-kmzo)-kE)h(J)

[h]x — f da dx e(ﬂg(k)Jrix(Af\/q’zr«/qrqlzo)f%(1fqo)x2)h(x) .

The eigenvalueg® of the replicon-like eigenvector familieR are as follows:
R@ : yR” — K1 — 2K, + K3
R :yR = Ly — 2L, + La+ 2m(Ly — Ls — Ly + Ls) + m*(Ls — 2Ls + L)

(e) (AS)
RY :yR =Ly — 2Ly + L3
Rée) : VRg) =L1—2Ly+ La+m(Ly— L3z — Ls+ Ls).
We can also evaluate [1]and (in the limitg — oo) [1],. These are

1 JF VFo— F1)?
M= 5= eXp<E - 1222 ;) v )

_1 0 B ‘i (A6)
A= exp(—wy [guo) + (ho — a1z — \/quoﬂ) :

v1—yg"(%0) 2y
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